MECÂNICA GRACELI GENERALIZADA multidimensional - relativista indeterminada


dentro da sua mecânica e com  o operador  multidimensional de GRACELI   ¨*  ¨se tem a indeterminalidade quântica generalizada de Graceli



 

  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.









ψ     [ / ]   /[]

  ) [,] / [    ]     .


ψ     [ / ]   /[]

  ) [,] / [    ]     .




ψ        / [ [ []  ] ]    .




   / ]]   ) [[ ][]

ψ] ]  .



 ψ   / [ [ ] []

 ] ψ] /    .





ψ    ) [[ ][ ,]

ψ] .   . 






ψ         [] [ ][,] ]   .,



 ψ        [ [ ]]

 
ψ]]   .




ψ       / [ 

[ ]] ]    .






ψ   / [ [ ]]

ψ] /     .




*  [ ]]

ψ[ 
] / ] ]] .








    [[ ]]/

] [
.]ψ]] .





ψ [[ ]]

 ]..,]ψ]/ ]  .










  / [ [ ]]

.]ψ ]  .




ψ      [  [ ] []

  ψ ] / ]    .






ψ     []

] /      [[ ]]     .






ψ  [[[ ]]  ) [

ψ [,]










ψ     [ [[ ]]

  ) []] /  ψ     .



   [[ ]] /   ) / [].

, ] / ψ   .

magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]




Na física a Representação de Heisenberg, desenvolvida pelo físico Werner Heisenberg, é a formulação da mecânica quântica onde os operadores (observáveis) são dependentes do tempo e o estado quântico são independentes do tempo. Isto demonstra o contraste com a Representação de Schrödinger na qual os operadores são constantes e o estado quântico se desenvolve no tempo. Estas duas representações apenas se diferem pela mudança na dependência do tempo. Formalmente falando a Representação de Heisenberg é a formulação da mecânica matricial numa base arbitrária, onde o Hamiltoniano não é necessariamente diagonal.

Detalhes matemáticos

[editar | editar código fonte]

Na Representação de Heisenberg da mecânica quântica o estado quântico, não se modifica com o tempo, e um observador A satisfaz a equação

onde H é o hamiltoniano e [·,·] é o comutador de A e H. Em certo sentido, a Representação de Heisenberg é mais natural e fundamental que a Representação de Schrödinger, especialmente para a teoria da relatividade geral e restrita.

A similaridade da Representação de Heisenberg com a física clássica é facilmente identificada ao trocar o comutador da equação acima pelos Parênteses de Poisson, então a equação de Heisenberg se tornará uma equação da mecânica hamiltoniana.


Na mecânica quântica, uma função de estado é uma combinação linear (uma superposição) de valor próprio. Numa Representação de Schrödinger, o estado de um sistema evolui com o tempo, onde a evolução para um sistema quântico fechado é provocada por operador unitário chamado de operador da evolução temporal. Isto difere de uma Representação de Heisenberg onde os estados são constantes enquanto os observáveis evoluem com o tempo. As estatísticas de medição são as mesmas em ambas as representações.

O operador de evolução temporal

[editar | editar código fonte]

Definição

[editar | editar código fonte]

O operador de evolução temporal U(t,t0) é definido como:

Isto é, quando este operador está agindo no estado "ket" em t0 no dá o estado "ket" em um tempo t. Para "bras", nós temos:

Propriedades

[editar | editar código fonte]

Primeira propriedade

[editar | editar código fonte]

A operador da evolução temporal deve ser unitário. Isto é necessário porque nós precisamos que a norma do estado "ket" não mude com o tempo. Isto é,

Em consequência disto,

Segunda propriedade

[editar | editar código fonte]

Distintamente U(t0,t0) = I, a função identidade. Como:

Terceira propriedade

[editar | editar código fonte]

A evolução temporal de t0 para t pode ser vista como a evolução temporal de t0 para um tempo t1 indeterminado e de t1 para o tempo final t. Então conclui-se:

Equação diferencial para o operador da evolução temporal

[editar | editar código fonte]

Se dermos, por convenção, o índice t0 no operador da evolução temporal de forma que t0 = 0 e escrevermos isto com U(t). A Equação de Schrödinger pode ser re-escrita da seguinte forma:

Onde H é o Hamiltoniano para o sistema. Como  é uma constante de ket (o estado ket é da forma t = 0), nós vemos que o operador da evolução temporal obedece a Equação de Schrödinger:

Se o hamiltoniano independe do tempo, a solução da equação acima será:

Onde nós também usamos o facto que t = 0U(t) precisa reduzir para a função identidade. Assim obteremos:

Perceba que  é um ket arbitrário. Apesar de que, se o ket inicial é um valor próprio do hamiltoniano, com o valor próprio E, nós temos:

Assim, vemos que os valores próprios do hamiltoniano são estados estacionários, eles apenas escolhem um fator de fase global já que eles evoluem com o tempo. Se o hamiltoniano é dependente do tempo, mas os hamiltonianos de diferentes tempo comutam, então o operador da evolução temporal pode ser escrito da forma:

Uma alternativa para a Representação de Schrödinger é trocar para uma rotação de referências de quadros, que seja rotacionada pelo propagador do movimento. Desde que a rotação ondulatória seja agora assumida pelo próprio referencial, uma função de estados não perturbados surge para ser verdadeiramente estáticos


Na matemática, a equação de Hamilton–Jacobi (HJE em inglês) é uma condição necessária para descrever a geometria em problemas de cálculos. Na física, ela é uma reformulação da mecânica clássica e é equivalente a outras reformulações como a segunda lei de Newtonmecânica de Lagrange e mecânica hamiltoniana. Ela foi formulada pelos matemáticos William Rowan Hamilton e Carl Gustav Jakob Jacobi.

A equação de Hamilton–Jacobi é particularmente importante por ser a única formulação matemática da mecânica em que o movimento de uma partícula pode ser representada como uma onda. Neste sentido, a equação preencheu um antigo objetivo da física teórica (iniciada no século XVIII por Johann Bernoulli) que era o de encontrar uma analogia entre a propagação da luz e o movimento de uma partícula. A equação de onda seguida por sistemas mecânicos é similar a, mas não idêntico a, equação de Schrödinger, por esta razão, a equação de Hamilton–Jacobi é considerada a maior aproximação da mecânica clássica com a mecânica quântica.[1][2]

Definição

[editar | editar código fonte]

A equação de Hamilton–Jacobi é uma equação diferencial parcial, não linear de primeira ordem para a função  chamada de função principal de Hamilton.

Esta equação pode ser obtida a partir da mecânica hamiltoniana tratando-se  como a função geradora para uma transformação canônica da mecânica Hamiltoniana . O momento conjugado corresponde à primeira derivada de  com respeito as coordenadas generalizadas

que pode ser obtido como se segue.

A mudança na ação de um caminho para um caminho vizinho é dado por

Desde que os caminhos do movimento atual satisfaçam a equação de Euler–Lagrange, a integral em  será zero. No primeiro termo nós colocaremos , e denotaremos o valor de  por simplesmente . Trocando  por , nós teremos

.

Comentários

Postagens mais visitadas deste blog